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Exact solutions of Schrodinger’s equation for translation- 
invariant harmonic matter 
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Montreal, Quebec H3G lMB, Canada 

Received 21 December 1977, in final form 21 February 1978 

Abstract. Earlier exact solutions of Schrodinger’s equation for translation-invariant 
systems of particles interacting by Hooke’s law pair potentials are augmented to include 
systems consisting of an arbitrary number S of groups of identical particles. Exact solu- 
tions can always be found whenever the number of distinct masses plus the number of 
distinct cobpling constants does not exceed (2s  + 1). The case S = 2 is solved in detail and 
is applied to show that harmonic matter is never stable. 

1. Introduction 

In an earlier paper (Hall 1978) we considered some exactly soluble franslafion- 
invariant many-body problems involving Hooke’s law pair potentials. By choosing a 
suitable set of relative coordinates we could solve Schrodinger’s equation exactly for: 
( a )  a system of N particles with distinct masses and the same coupling constant 
between all pairs; and ( b )  the ‘harmonic atom’ system consisting of a particle with 
mass mo and N identical particles with masses ml, and distinct coupling constants for 
the identical and non-identical pairs respectively. 

In this paper we extend the collection of exactly soluble problems to include 
systems consisting of S groups of identical particles with S distinct coupling constants, 
one for each group, and a further {S + 1 - n (m)} distinct coupling constants for the 
group-group pairs, where n ( m )  is the number of distinct masses. Thus we can allow 
(2s + 1) distinct parameters (masses and coupling constants) in the Hamiltonian of the 
exactly soluble system. This result could perhaps also be obtained by arguments based 
on the algebraic problem concerning the simultaneous diagonalisation of two quadra- 
tic forms with side conditions (representing the translation-invariance requirements). 
However, we have employed a purely constructive argument which yields suitable 
relative coordinates explicitly, together with the eigenfunctions and eigenvalues of the 
Hamiltonian. Eigenfunctions with particular spatial permutation symmetries may be 
constructed as sums of single-product eigenfunctions of the Hamiltonian in diagonal 
form. 

Our use in the title of the expression ‘harmonic matter’ is a reference to the work 
of Dyson, Lenard and Lieb (Dyson and Lenard 1967, Dyson 1967, Lenard and Dyson 
1968, Lieb 1976) on the stability of matter problem which concerns a system of 
particles interacting by Coulomb pair potentials and having zero total charge. If, for 
example, there are N positive and N negative particles, Dyson and Lenard have 
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proved that it is necessary and sufficient for stability (i.e. the ground-state energy EO is 
asymptotically proportional to N )  that at least one set of particles be identical 
fermions. In the present article we solve the analogous problem with Hooke’s law pair 
potentials and we find (0  3) that harmonic matter is never stable in the above sense. Of 
course, the analogy is somewhat limited by the fact that ground-state energy does not 
represent binding energy for the harmonic oscillator. 

0 

2. Exact sdutions to Schrodinger’s equation 

We consider first a system of N 1  1 identical particles of mass ml and NZ 2 1 identical 
particles of mass m2 interacting by Hooke’s law pair forces (i.e. S = 2). The trans- 
lation-invariant Hamiltonian H for this system is as follows: 

where the total mass m = Nlml+N2m2.  In order to solve Schrodinger’s equation 
for this problem we choose a new system of coordinates p = 
(PI, p2, p3, .  . ., P N ~ ,  p i ,  p i , .  . ., pk,, a) where p1 is the centre-of-mass coordinate and 
the remaining variables are translation-invariant relative coordinates. We use 
normalised Jacobi coordinates for each sub-system of identical particles and one 
additional relative coordinate a. If p and r are column vectors of the new and old 
coordinates respectively, then the matrix B in the coordinate transformation p = Br 
has the following form: 

B =  
etc I 

0 
1 

0 . .  0 
1 - 
Jz -z 

0 .  0 
2 -- 1 z & 

etc I 
a a . .  . a1 -b -b -b .  

where N l a  = N2b and N 1 a 2  + N2bz = 1. In terms of the relative momenta vi = -ihV,,, 
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.rrl = -ihV,;, and .rr = -ihV, the operator T representing total relative kinetic energy 
becomes: 

(3 1 T =  NI C -+ *; N2 - (.r;)2 +-(-++, 1 N2 N I  2 

i=22ml i = 2  2m2 N ml m 
Rows 2 to N of B are a set of orthonormal vectors each with a zero sum of 

elements. Hence we get (Hall 1978) the following identities for sums of pair-distances 
squared: 

N2 N2 

(d - r ; ) ’ =  N2 
i<j i = 2  

NI N2 

1 (pair distance)2 = N( p’ + c (p; )2+a2) .  (6) )  
all pairs i = 2  i = 2  

With these results the translation-invariant Hamiltonian can now be separated 
completely giving (from equations (l), (3), (4), (5) and (6)): 

We note that the diagonalisation leading to equation (7) will go through even if k: and 
k:  are negative provided that N l k :  +N2k: > O  and Nzk: + N l k :  >O. The unsym- 
metrised eigenfunctions of H are products of 3(N - 1) Hermite functions and the 
eigenvalues are the corresponding sums of single-particle energies. The burden of 
spatial permutation symmetry is carried for the N 1  particles entirely by the depen- 
dence of the state on the p variables, and for the N2 particles by the dependence of the 
state on the p ’  variables; (+ is symmetric in (rl, r 2 , .  . . , r N , )  and also in 
( r i ,  rb, . . . , rh2). Equation (7) is consistent with the solution we found (Hall 1978) to 
the ‘harmonic atom’ system in which N2 = 1.  

For the special case of scalar particles in one spatial dimension we find from 
equation (7) (Post 1953, Hall 1978) the following expression for the ground-state 
energy Eo: 

where for bosons A ( N )  = ( N  - 1) and for fermions A ( N )  = ( N 2  - 1); in both cases 
a = 1. 

In three dimensions the ground-state energy when both groups are bosons is given 
by the expression in equation (8) multiplied by the factor three. The corresponding 
formula for (scalar) fermions in three dimensions is more complicated because we 
must anti-symmetrise in the individual particle indices for each set of identical 
fermions and allow for all possible linearly independent states (Post 1953, Hall 1978). 
There are successive shells of iq(q + 1) states, q = 1, 2 , 3 ,  . . . and, in order to obtain a 
simple formula, we choose the number of fermions so that exactly v shells are filled. 
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For example if the N1 particles are fermions we have: 
U1 

q = l  
N1= 1 fq (q+ l )=&(v:  +3v l+2)=f (v l ) .  

The successive energies are proportional to (2q + 1) and consequently the factors 
A(N1) in equation (8) must be replaced (Post 1953) by 

"1 

q = 1  
g ( v l ) =  1 $q(q + 1)(2q + 1) -3  =:v l (v :  + 4 v :  + 5 ~ 1 + 2 ) - 3 .  (10) 

Hence in three dimensions the ground-state energy (for scalar particles) is given by 
equation (8) in which a = 3 and we have: 

bosons : A(Ni)  = 3(Ni - l ) ,  i = 1 or 2. (1 1) 

The most general problem of this type that we are able to solve exactly consists of 
S groups of identical particles with particle numbers (N1, Nz, . . . , Ns)  and masses 
(ml, mz, . . . , ms). For this general problem we take the transformation matrix B to 
be the natural generalisation of equation (2) with S 'Jacobi blocks' and (S -1 )  
a-variables, (a2, u3, ,  , . , US), defined by the last ( S -  1) rows of E, which we choose 
to have the following form: 

1 U ~ U  z . . .  ~ : ! ( - b z - b z  . . . -  b z )  0 . . .  0 10 . . .  0 )  . . .  
~ 3 ~ 3 . .  . a 3  1 a 3  ~ 3 . .  . ~3 l - b 3 - b 3 . .  . - b 3  I O . .  . O  1 . .  . i etc 

Hence, in addition to the S identities like equation (4), there will be a further ( S  - 1) 
identities like equation (6 )  and evidently we could admit at least ( S  - 1) distinct 
groupgroup coupling constants. However there is a snag in this argument. If the 
particle masses ( m l ,  m2, . . . , m s )  are all distinct, then choosing the last ( S  - 1) rows of 
B to have the form (13) will not allow us to write the relative kinetic energy T in 
diagonal form: there will now be cross-terms between the momenta associated with 
the a-variables. In this extreme case of S distinct masses, we could still solve the 
problem exactly if the coupling constants between all pairs of differetit particles are 
equal (i.e. the extension of Hall 1978, 02 to groups of identical particles): we should 
then continue B nor as in the array (13) but rather as a generalisation of the matrix B 
in Hall (1978, 02); and use only one identity like equation (6). 

The situation for S groups of identical particles (with the same coupling constant 
between all pairs from the same group) can be summarised as follows. We can solve 
the problem exactly if the number of distinct masses n ( m )  and the number of distinct 
group-group coupling constants n (k) satisfy 

n ( m ) +  n ( k )  = S + 1. (14) 
Of course, we also have, in addition, the S coupling constants for pairs within each 
given group of identical particles (for the present argument we assume Ni b 2 ,  i = 1, 
2, . . . , S ) .  Thus the exactly soluble problem can have (2s + 1) distinct parameters 
corresponding to the (2s + 1) independent parameters which appear in the diagonal 
form of H (for example, equation (7) in which S = 2). 
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As we have observed earlier (Hall 1978, 0 5 )  we could actually allow up to Ni 
distinct coupling constants (instead of 1) within each group of Ni > 2 identical 
particles. In this event we should have altogether Z? Ni + ( S  + 1) = (N  + S + 1) distinct 
parameters allowed. However, since the particles in each group are identical in the 
present problem, it does not make much physical sense to favour some pairs within the 
same group with a stronger coupling than others. 

In the case of N particles with N distinqt masses (or the corresponding problem 
with groups of particles) it may still be possible to obtain exact solutions and allow 
some choice of different Zoupling constants. Our constructive method has not yielded 
a solution in this case and cannot, of course, be used to rule out the possibility. If one 
removes the mass distinction by an initial scale change then the construction of 
translation-invariant coordinates becomes rather complicated. This is why we have 
always used translation-invariant coordinates from the outset. 

3. Conclusion 

In this paper and an earlier article (Hall 1978) we have established a large class of 
exactly soluble translation-invariant many-body problems involving Hooke’s law pair 
potentials, We have used a set of normalised Jacobi relative coordinates for each 
group of identical particles in the system so that we can apply the analysis of Post 
(1953) to construct energy eigenstates which satisfy the Pauli principle for those 
groups which are fermions. The remaining relative coordinates are then chosen to be 
symmetric under the permutation of identical particles and such that the maximum 
number of distinct group-group coupling constants is accommodated whilst the 
kinetic energy operator remains diagonal. 

As an application of the solutions obtained in 0 2  we consider a system consisting 
of two groups each of N identical particles in three dimensions and we arrange that 
‘unlike particles attract’ and ‘like particles repel’ by setting Ak: = Aki  = k: = k2 > 0, 
and -1 < A  < O .  We then obtain the formal analogue of the ‘stability of matter 
problem’ considered by Dyson and Lenard (1967), but with harmonic potentials 
replacing Coulomb potentials. From equations (8), (11) and (12) in 02 above we 
obtain in this case the following results: 

both groups bosons : 

Eo - N3l2  

at least one group fermions : 

where ‘ - ’ indicates the asymptotic form of N dependence for large N. We get the 
same forms of N dependence of Eo if we consider more than two groups of particles 
with fixed ratios of particle numbers and coupling constants. A ‘stable system’ (with 
E O - N )  of this type is therefore impossiblet. The general energy lower-bound 
methods for many-body problems (Hall and Post 1967, Hall 1967, Carr and Post 
1977) which have (to some extent) been developed from exact harmonic oscillator 
solutions have, with one pathological exception (Horton 1973), generally given dis- 
appointing results when applied to stable or saturating systems in which E o - N .  A 

t However, a specially constructed N-dependent A of the form A = -(1 -N-5’3)  would yield Eo-  N. 
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goal for these energy lower-bound studies might be to develop a general method 
which would provide in particular a short proof of the Dyson and Lenard theorem 
(Dyson and Lenard 1967, Lieb 1976) which states that Eo-  N for the above 2N-body 
problem with Coulomb pair potentials, provided at least one group of particles 
consists of identical fermions. 

Although the number of quarks required by elementary-particle theory is increas- 
ing at an alarming r i te  (Harari 1976) a sufficiently large variety of exactly soluble 
quark models is now possible with the solutions we have found in this paper and in 
Hall (1978). For example, we could now consider a four-quark model with two 
distinct masses (S = 2) and three different coupling constants; or even a six-quark 
model with, say, three distinct masses (S = 3) and four different coupling constants. Of 
course, the very tight binding provided by the harmonic oscillator potential is appro- 
priate for systems of quarks. 
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